您好,欢迎来到高考信息网
报考 备考
当前位置: 首页  >> 考研  >> 研招资料  >> 考研大纲  >> 2014年天津大学0803光学工程考研大纲
2014年天津大学0803光学工程考研大纲
发布时间:2014-07-23 来源: 考研帮 类别: 研招资料 - 考研大纲

  考研网快讯,据天津大学研究生院消息,2014年天津大学光学工程考研大纲已发布,详情如下:
  806测控技术基础
  一、考试的总体要求
  掌握测控技术的基础知识和基本理论,并能合理运用解决实际问题。二、考试的内容及比例
  考试内容分为A、B两个模块,考生可任选其中一个模块。A模块为精密测试理论与技术,B
  模块为传感技术与测控电路。
  (一)A模块:精密测试理论与技术
  1.精密测试理论
  (1)测试系统主要内容:测试的基本概念,测试系统的组成,测试系统的静、动态特性。
  基本要求:测试的基本概念,测量标准,量值传递与溯源体系;测试系统的组成及各部分的功能;测试系统的数学模型、传递函数及频率响应函数;一阶系统和二阶系统的频率特性;理想频率响应特性及不失真测试的条件;测量仪器主要性能指标的定义及表示方法。
  (2)误差基本概念主要内容:误差的定义及表示法,精度(准确度)的概念,有效数字与数据运算。基本要求:误差的定义及表示法,误差分类;精度的概念;数字的舍入规则和运算规则,能按要求设置有效数字的位数。
  (3)误差的基本性质与处理主要内容:随机误差的性质与处理方法,系统误差的性质与处理方法,粗大误差的性质与处理方法。基本要求:随机误差、系统误差、粗大误差的产生原因和特征;正态分布的特征和处理方法;
  随机误差的其他分布;算术平均值、单次测量的标准差、算术平均值的标准差、极限误差等概念并能正确计算;等精度及不等精度直接测量列测量结果的数据处理。基本要求:函数系统误差和函数随机误差的计算方法;误差合成的计算。
  (4)测量不确定度主要内容:测量不确定度的概念,测量不确定度的评定,测量不确定度的合成。基本要求:测量不确定度的基本术语,不确定度的来源;标准不确定度的两类评定、合成标准不确定度和扩展不确定度的求取方法;不确定度报告
  (5)线性参数的最小二乘法处理主要内容:最小二乘法原理,正规方程,精度估计。基本要求:等精度测量线性参数最小二乘法处理的正规方程,求解及精度估计。
  (6)回归分析
  主要内容:回归分析的基本概念,一元线性回归,一元非线性回归。基本要求:一元线性回归方程的求解,回归方程的方差分析及显著性检验。一元非线性回归方程的求解及精度分析。
  2.精密测试技术
  (1)长度及线位移测量主要内容:长度测量的标准量和标准环境,阿贝原则,长度尺寸的测量,形位误差的测量,表面粗糙度的测量,线位移的测量,纳米测量技术。基本要求:长度测量的标准量和标准环境;阿贝原则;长度的直接测量和间接测量、绝对测量和相对测量方法及各种测量仪器;三坐标测量机结构形式,测头的种类及工作原理,坐标测量数据处理的主要内容;加工中测量仪和自动补调仪的特点;形位误差测量的基本概念;
  直线度误差的概念和评定方法及常用测量方法和仪器;表面粗糙度常用的测量仪器和评定参数;双频激光干涉仪位移测量原理;扫描隧道显微镜和原子力显微镜的结构及工作原理。
  (2)角度及角位移测量主要内容:角度的自然基准、实物基准和圆周封闭原则,角度尺寸的测量,圆分度误差的测量。基本要求:角度的自然基准、实物基准和圆周封闭原则;角度的直接测量和间接测量方法及测量仪器;圆分度误差的评定指标;圆分度误差的绝对测量和相对测量方法。
  (3)速度、转速和加速度测量主要内容:速度、转速和加速度测量的基本方法。基本要求:速度的测量方法、皮托管测速装置、多普勒测速、陀螺测量角速度;电子数字式转速表、频闪式转速表;压电式加速度计、伺服式加速度计。
  (4)力、力矩和压力的测量
  主要内容:力、力矩和压力测量的基本方法。基本要求:力的测量方法、各种力的测量装置;各种称重传感器、皮带秤;转矩的测量方法、传递法力矩测量装置;各种压力测量装置、各种真空测量装置。
  (5)机械振动的测试主要内容:机械振动的概念、类型,各种测振传感器,振动量的测量方法。基本要求:机械振动的概念、类型及其表征参数;振动的激励方式、各种激振器;惯性式测振传感器的力学模型与特性分析、磁电式振动速度传感器;固有频率和阻尼比的测量方法。
  (6)温度的测量主要内容:温标的概念及各种类型温度计的工作原理。基本要求:各种温标的定义;各种膨胀式温度计、压力式温度计;热电偶温度计的工作原理、基本定律和各种参比端处理方法;各种热电阻温度计及其引线误差的处理方法;热辐射基本
  定律及各种热辐射温度计。
  (7)流量的测量主要内容:流量的概念及各种类型流量计的工作原理。基本要求:流量的定义;椭圆齿轮流量计;差压式管道用流量计;转子流量计和靶式流量计;各种测速式流量计;振动式流量计;热式质量流量计和各种推导式质量流量计。
  参考材料:
  [1]费业泰,误差理论与数据处理[M].6版,北京:机械工业出版社,2010.
  [2]倪育才,实用测量不确定度评定[M].3版,北京:中国计量出版社,2009.[3]施文康,余晓芬,检测技术[M].3版,北京:机械工业出版社,2010.
  (二)B模块:传感技术与测控电路
  1.传感技术
  (1)传感器的一般特性主要内容:传感器的基本概念及其静态特性指标。基本要求:传感器的定义及其组成;传感器静特性的主要技术指标。
  (2)电阻式传感器主要内容:电阻式传感器的工作原理,主要特性,直流电桥,温度误差与补偿以及电阻式传感器的应用。
  基本要求:金属的电阻应变效应,应变式传感器的工作原理与特性;压阻效应,压阻式传感器的工作原理与特性;直流电桥、单臂电桥、差动电桥;温度误差及其补偿;电阻式传感器
  的应用。
  (3)电容式传感器主要内容:电容式传感器的工作原理,主要特性,基本转换电路,优化设计,电容式传感器的应用。基本要求:电容式传感器的工作原理、类型、主要特性;电容式传感器的转换电路、驱动电缆技术、等位环技术;电容式传感器的应用。
  (4)霍尔式传感器主要内容:霍尔式传感器的工作原理,主要特性,误差与补偿,霍尔式传感器的应用。基本要求:霍尔效应,霍尔式传感器的工作原理,主要特性;霍尔式传感器的误差来源与补偿措施,电路模型;霍尔式传感器的应用。
  (5)光电式传感器主要内容:光源的工作原理与特性,光电器件,光纤式传感器,激光式传感器以及光栅式传感器。基本要求:典型光源的特性;光电器件工作效应、原理、特性及其应用;电荷耦合器件(CCD)的结构、工作过程及其应用;位置敏感器件(PSD)的工作原理与应用;光纤传光原理,光纤传感器的原理和特点,光纤式传感器的类型;莫尔条纹及其特性,光栅式传感器的工作原理、类型、特点;迈克尔逊干涉仪的工作原理。
  2.测控电路
  (1)绪论主要内容:测控电路的类型、组成及功用;测控电路的输入输出信号。基本要求:测控电路的功用;对测控电路的主要要求;测控电路的输入输出信号;测控电路
  的类型与组成。
  (2)信号放大电路主要内容:运算放大器;典型测控放大电路的基本原理及功能;放大器的噪声。基本要求:运算放大器的基础知识、运算放大器的误差及其补偿;典型测控放大电路包括同相放大电路,反相放大电路,基本差分放大电路,高共模拟制比放大电路,电桥放大电路,高输入阻抗放大电路,隔离放大电路的基本原理及功能,了解放大器噪声的基础知识。
  (3)信号调制解调电路主要内容:信号的调制解调;调幅及检波;调频及鉴频;调相及鉴相;脉宽调制及解调。基本要求:重点掌握双边带调幅信号及其表达式和波形以及载波信号频率与调制信号频率之间的关系;几种调幅方法以及包络检波;精密检波电路作用;相敏检波电路的特点,与包络
  检波电路的比较;相敏检波电路的选频特性和鉴相特性;了解调频信号的表达式、波形;调频及鉴频方法;频率计工作原理;调相信号的表达式、波形;调相及鉴相方法;脉宽调制信号表达式、波形;脉宽调制及解调方法。
  (4)信号分离电路主要内容:滤波器的类型及特性指标;压控电压源型滤波电路及无限增益多路反馈型滤波电路;滤波器的设计等。基本要求:按不同方式分类的滤波器的类型及滤波器特性指标;压控电压源型滤波电路及无限增益多路反馈型滤波电路。不同类型滤波器的设计方法,掌握不同滤波器传递函数的推导方法与频率特性分析等。
  (5)信号运算电路
  主要内容:比例运算放大电路;加减法运算电路;微分积分运算电路;常用特征值运算电路。基本要求:比例运算放大电路,加减法运算电路,微分积分运算电路,常用特征值运算电路:
  绝对值电路、平均值运算电路、峰值运算电路、有效值运算电路。
  (6)信号转换电路主要内容:采样保持电路的组成;电压比较器;电压频率转换电路;电压电流转换电路;D/A转换器;A/D转换器。基本要求:采样保持电路的基本原理;模拟开关;采样保持电路;电压比较器包括电平比较电路、滞回比较电路、窗口比较电路;电压频率转换电路;电压电流转换电路;D/A转换器包括加权电阻网络D/A转换器及R-2R梯形电阻网络D/A转换器;A/D转换器包括双积分式A/D、逐次逼近式A/D、并行比较式A/D的工作原理。
  (7)信号细分与辩向电路主要内容:直传式细分电路;平衡补偿式细分。
  基本要求:直传式细分电路,主要包括单稳四细分辨向电路、电阻链分相细分、微型计算机细分、只读存储细分;平衡补偿式细分,主要包括相位跟踪细分和频率跟踪细分。
  (8)逻辑控制电路主要内容:二值可控元件驱动电路。基本要求:二值可控元件驱动电路包括功率开关驱动电路、继电器与电磁阀驱动电路。
  (9)连续信号控制电路主要内容:导电角控制逆变器;脉宽调制(PWM)控制电路。基本要求:了解导电角控制逆变器的基本原理;掌握脉宽调制(PWM)控制电路的基本原理。
  五、主要参考书目
  4.唐文彦主编.传感器(第4版).北京:机械工业出版社,2008.
  5.张国雄主编.测控电路(第4版).北京:机械工业出版社,2011.

  807工程光学
  一、考试的总体要求
  本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论掌握情况,以及实际解决光学问题的能力。
  考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。
  二、考试的内容及比例:考试内容包括应用光学和物理光学两部分,试题内容比例各占50%。“应用光学”应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。具体内容如下:
  第一章几何光学基本定律与成像概念掌握几何光学基本定律的内容、表达式和现象解释:1)光的直线传播定律2)光的独立传播定律3)反射定律和折射定律(全反射及其应用)4)光路的可逆性5)费马原理6)马吕斯定律:
  了解完善成像的概念和相关表述掌握应用光学中的符号规则,了解单个折射球面的光线光路计算公式(近轴、远轴)掌握单个折射球面、反射球面的成像公式,包括垂轴放大率β、轴向放大率α、角放大率γ、拉赫不变量J等公式;理解三种放大率的定义和物理意义。掌握共轴球面系统计算方法(包括过渡公式、成像放大率公式)
  第二章理想光学系统
  掌握共轴理想光学系统四对基点、基面的性质,并能灵活运用。掌握图解法求像的方法,会作图求像。掌握解析法求像方法(牛顿公式、高斯公式)。
  掌握理想光学系统垂轴放大率β、轴向放大率α和角放大率γ的定义、计算公式、物理意义及其与单个折射球面公式的异同,理想光学系统两焦距之间的关系,理想光学系统的组合公式和正切计算法
  掌握望远物镜、反远距型物镜的组成和结构特点,会画光路图。第三章平面与平面系统
  1.了解平面光学元件的种类和作用。
  2.掌握平面镜的成像特点和性质,平面镜的旋转特性,光学杠杆原理和应用
  3.掌握平行平板的成像特性,近轴区内的轴向位移公式
  4.掌握反射棱镜的种类、基本用途、成像方向判别、等效作用与展开。
  5.了解折射棱镜的作用,掌握其最小偏向角公式及应用,光楔的偏向角公式及其应用第四章光学系统中的光束限制
  1.掌握孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系
  2.掌握视场光阑、入窗、出窗、视场角的定义及它们的关系
  3.掌握渐晕、渐晕光阑、渐晕系数的定义及渐晕光阑和视场光阑的关系
  4.掌握物方远心光路的工作原理
  5.了解光瞳衔接原则及其作用
  6.掌握场镜的定义、作用和成像关系第六章光线的光路计算及像差理论
  1.了解像差的定义、种类和消像差的基本原则
  2.掌握7种几何像差的定义、影响因素、性质和消像差方法第七章典型光学系统了解正常眼、近视眼、远视眼的定义和特征,校正非正常眼的方法,眼睛调节能力的计算,双目立体视觉的原理。掌握视觉放大率的概念、表达式及其意义,与光学系统角放大率的异同点。掌握显微镜系统的概念和计算公式,包括:1)结构组成、成像关系、光束限制2)视觉放大率公式3)线视场公式4)数值孔径和出瞳D'5)物镜的分辨率6)显微镜的有效放大率7)物镜的景深8)视度调节
  了解临界照明和坷拉照明系统的组成、优缺点
  掌握望远系统的概念和计算公式,包括:1)结构组成、成像关系、光束限制2)视觉放大率公式3)分辨率与视觉放大率的关系4)有效分辨率和工作分辨率掌握摄影系统的概念和计算公式,包括:1)结构组成、成像关系、光束限制2)摄影物镜的3个主要参数及其影响作用3)分辨率公式4)光圈的定义及其与孔径光阑、分辨率、像面照度、景深的关系5)景深公式及其影响因素6)摄影物镜的种类掌握投影系统的概念和计算公式,包括:1)系统的基本要求2)主要光学参数3)其照明系统的衔接条件
  第九章光学系统的像质评价掌握光学系统像质评价方法和各自的优缺点。
  了解用MTF曲线和其下面积判断光学系统成像质量的方法和基本原理。掌握望远物镜、显微物镜、望远目镜、显微目镜和照相物镜的像质评价要求和校像差要求。
  “物理光学”应掌握的重点知识包括:光的电磁理论基础、光的干涉和干涉系统、光的衍射、光的偏振和晶体光学基础等。具体内容如下:
  第十章光的电磁理论基础掌握电磁波的平面波解,包括:平面波、简谐波解的形式和意义、空间频率概念、物理量的关系、电磁波的性质等;
  掌握球面波的定义和表达式,了解柱面波的定义及表达式;掌握光在电介质分界面上的反射与折射(包括菲涅耳公式及其讨论,全反射);掌握波的叠加原理、计算方法和4种情况下两列波的叠加结果及性质分析;掌握相速度和群速度概念,表达式及其在不同介质中关系。
  第十一章光的干涉和干涉系统掌握干涉现象的定义和形成干涉的条件;掌握杨氏双缝干涉性质、装置、公式、条纹特点及其现象的应用,了解分波前干涉的其他实
  验装置;掌握条纹可见度的定义、影响因素及其相关概念(包括临界宽度和允许宽度、空间相干性和时间相干性、相干长度和相干时间等);掌握平行平板的双光束干涉定域面、干涉装置、干涉条纹的性质和计算公式;掌握楔形平板的双光束干涉定域面、干涉装置、干涉条纹的性质和计算公式;掌握典型双光束干涉系统(斐索、迈克尔逊、马赫—曾德干涉仪)及其应用,了解泰曼—格林干涉仪和数字波面干涉术,傅里叶变换光谱仪;掌握平行平板的多光束干涉条件、装置、干涉条纹性质与计算;
  掌握法布里-珀罗干涉仪、干涉滤光片及其光学性能,了解光学薄膜。第十二章光的衍射
  掌握衍射现象定义、衍射系统和分类;掌握惠更斯—菲涅耳原理及数学表达式;
  掌握夫琅和费衍射公式;掌握矩孔夫琅和费衍射的光强分布公式和衍射条纹性质分析;掌握单缝夫琅和费衍射的光强分布公式和衍射条纹性质分析;掌握圆孔夫琅和费衍射的光强分布公式和衍射条纹性质分析,成像系统的分辨本领;掌握多缝夫琅和费衍射的光强分布公式和衍射条纹性质分析;掌握衍射光栅(平面光栅)方程、特性;了解闪耀光栅、阶梯光栅的方程、特性;掌握菲涅耳波带法,了解菲涅耳透镜。
  第十四章光的偏振和晶体光学基础掌握自然光、偏振光和部分偏振光的定义、特点,偏振度的定义和计算,能够产生偏振光的方法,以及布儒斯特定律和马吕斯定律;
  了解光在晶体中的传播;掌握晶体光学的基本概念(光轴、主平面、主截面、单轴多轴晶体、正负晶体),会用惠更斯原理分析晶体的双折射现象;
  掌握各种起偏器、分束器和波片(l/4波片、l/2波片和全波片)的结构、作用和工作原理;了解偏振光的矩阵表示,会用矩阵方法表示偏振光和配置器件,并求出射光的矩阵;掌握偏振光的变换和测定方法(辨别偏振光、产生要求的偏振光);掌握偏振光的干涉原理、装置、公式、光强分布特性;
  10.了解磁光、电光和声光效应。
  考试内容中基本理论、基本知识和基本技能性题目占80%左右,综合和实际应用题目(有一定难度的题目)不超过20%。
  三、试卷题型及比例试题类型包括:填空题、是非判断题、多重选择题、简答题、作图题、计算题等,每年的试题类型从中选几类,其中计算题所占比例一般为40-50%,其他各类题型一般占60-50%。试题反映本课程的主要内容和要求,适当均匀分布在上述内容中。
  四、考试形式及时间考试形式为笔试。考试时间为3小时。
  五、参考文献
  (1)《工程光学》第2版,郁道银,机械工业出版社,2006
  (2)《工程光学基础教程》,郁道银,机械工业出版社,2007
  (3)《工程光学复习指导与习题解答》,蔡怀宇,机械工业出版社,2009

  809光电子学基础
  一、考试的总体要求
  旨在考查考生是否具备光电子学专业的物理学基础和主要的专业课知识。其中物理学基础的考试内容为《物理光学》课程;专业课为《激光原理》课程。主要考查考生对基本概念的理解是否正确,是否具备应用物理学原理去灵活解决具体问题的能力,能否简洁、准确表达解决问题的过程和结果。
  二、考试的内容及比例与物理学基础相关的考试内容涉及《物理光学》课程;与光电子技术相关的考试内容涉及《激光原理》课程。考试内容以大题为单元,共10道大题,任选5道大题做答,多选总分得零。每道大题30分。其中《物理光学》5道大题,《激光原理》5道大题。每门课程的详细考试大纲见附录。每道大题可以是若干小题的集合,或若干关联的小问题。主要考查考生对基本概念的理解是否正确,是否具有应用原理灵活解决具体问题的能力,能否简洁、准确表达解题过程和结果。
  三、考试的题型及比例
  共10道大题,任选5道大题做答,多选总分得零。每道大题可以是若干小题的集合,或若干关联的小问题。题型包括基本概念考查题,分析论证推导题,数值估算题等。原则上概念题比例较大,约占70~80%。
  四、考试形式及时间
  考试形式为笔试,考试时间为3小时(或以研究生院公布的为准)。
  附录
  《激光原理》部分
  1.激光的基本原理光的受激辐射基本概念;激光的特性。
  2.光学谐振腔与高斯光束(1)光腔理论的一般问题:光学谐振腔与模(纵模与横模)的基本概念;共轴球面腔的稳定性条件;光腔的损耗。
  (2)稳定球面腔:对称共焦腔的自再现模及其行波场及计算。
  (3)高斯光束:高斯光束的基本性质;高斯光束q参数的变换规律(ABCD法则);高斯光束的聚焦与准直;高斯光束的自再现变换与稳定球面腔;高斯光束模式的匹配。
  3.电磁场和物质的共振相互作用
  (1)电磁场和物质相互作用:光谱线加宽和线型函数;自然加宽和碰撞加宽(均匀加宽);多普勒加宽(非均匀加宽);激光器的速率方程。
  (2)连续激光器的增益与工作特性:增益系数与小信号增益;均匀加宽、非均匀加宽及综合加宽工作物质的增益饱和特性;连续激光器的工作特性;单模激光器的线宽极限;激光器的频率牵引。
  4.激光振荡特性
  (1)激光器的振荡阈值和输出功率和能量。
  (2)弛豫振荡、线宽极限、频率牵引。
  5.激光器特性的控制与改善
  (1)选模和稳频。
  (2)调Q与锁模。
  参考书:《激光原理》,(第6版),周炳琨编著,国防工业出版社
  《物理光学》部分
  1.光波的基本性质及其数学描述;
  2.双光束干涉和多光束干涉:
  ①双光束干涉;
  ②光场的时间相干性和空间相干性;
  ③多光束干涉;
  3.光的衍射:
  ①标量衍射基本理论和菲涅尔衍射和夫朗和费衍射近似;
  ②各种开孔的夫朗和费衍射规律和应用;
  ③傅立叶光学在衍射中的应用.
  4.光在各向异性介质中的传播特性:
  ①晶体的光学各向异性;
  ②光波在晶体中传播的几何法描述;
  ③平面光波在各向异性媒质界面上的反射和折射;
  ④偏振器和补偿器的原理和应用;
  ⑤晶体的偏光干涉。参考书:
  《物理光学与应用光学》,(第二版),石顺祥编著,电子科技大学出版社
  《物理光学》,(第三版),梁铨廷,电子工业出版社
  《物理光学学习指导与题解》,刘翠红编著,电子工业出版社

  810生物医学工程基础
  一、考试的总体要求
  研究生入学考试本着基础和能力并重的原则,考试以基本概念、逻辑思维、完整的设计思想为主。考试内容主要是医用传感器和医学信息检测及处理,其目的在于考核考生对于医用学仪器的检测技术和数字信号处理的掌握情况。要求掌握医用传感器的基本知识、基本概念、工作原理、特点及应用。要求考生熟悉医用传感器的定义,医用传感器的分类与组成,人体信息检测的特殊性,医用传感器的发展方向;医用传感器的基本特性(静态特性和动态特性)及其计算方法,掌握电阻式传感器、压电式传感器、光敏传感器、热敏传感器及化学与生物传感器的工作原理与应用;了解电容式、电磁式与磁敏式传感器的工作原理与特点。并能利用传感器组成人体信息测量系统,了解传感器与系统的接口、系统的结构框图。要求掌握数字信号处理的基本概念和方法,包括线性时不变离散时间系统,采样与序列、数字滤波,熟练运用Z变换、DFT进行公式推导计算,掌握基2FFT算法,能设计IIR、FIR数字滤波器。
  二、考试的内容及比例医用传感器总论及基本特性(约为10%)物理型传感器及检测(约为25%)化学与生物传感器及制备技术(约为15%)离散时间系统及Z变换(约为10%)离散傅立叶变换(约为10%)快速傅立叶变换(约为10%)
  IIR数字滤波器设计(约为10%)FIR数字滤波器设计(约为10%)三、考试的题型及比例
  试卷一般分为10题,题型分为简答题、论述题、设计分析题及计算题,所占比例分别为
  15%、20%、35%和30%。四、考试形式及时间考试形式为笔试,考试时间为3小时参考用书:
  《数字信号处理》,作者:吴镇扬,高等教育出版社。
  《现代生物医学传感技术》,作者:王平,浙江大学出版社。
  《医用传感器与人体信息检测》,作者:王明时,天津科学技术出版社。

  814通信原理
  一、考试的总体要求
  通信原理属于电子信息技术类专业的一门重要的基础理论课程。因此要求考生必须较好地掌握通信系统的基本原理,基本性能的分析方法;并应了解通信网的基本概念。能够运用数学的方法分析通信系统中各种调制、解调原理,掌握有关编码和解码的原理和方法,能够对各系统进行抗噪声性能分析。能够应用所学知识,对目前通信领域的一些实际问题进行分析研究,并能根据要求设计出性能指标较高的适用的通信系统。了解通信技术的发展动态。主要考核考生对基本知识和基本技能的掌握程度,了解考生在通信领域中分析问题和解决问题的能力。
  二、考试的内容及比例
  1、通信的基本概念:定义,系统模型,信息的度量、性能分析指标。(占5%)
  2、信道特性:恒参和变参信道,随机过程的基本概念、信道中的加性噪声,信道容量公式应用。(占10%)
  3、模拟通信系统:调制的概念和分类、幅度调制和角度调制的时域和频域分析,调制和解调方法,带宽和功率的计算,噪声性能分析。频分复用。(占15%)
  4、信源编码:抽样定理;PCM和ΔM的编译码原理,噪声性能分析;PCM和ΔM的改进型;时分复用基本概念。(占15%)
  5、数字信号的基带传输:常用码型,数字基带信号的功率谱、基带传输特性设计,基带传输带宽计算,奈奎斯特准则,眼图和均衡,部分响应技术。(占10%)
  6、数字信号的载波传输:二进制数字调制和解调方法。多进制数字调制的基本原理,产生和解调方法。各种数字调制的带宽计算。二进制和四进制数字调相的波形分析。最佳接收基
  本概念、最大输出信噪比准则和匹配滤波器的概念,二进制调制系统最佳接收机性能分析。
  (占10%)
  7、现代数字调制技术;MSK、QAM、π/4-QPSK、OQPSK,扩频通信等的基本原理,调制和解调方法。码分多址的基本概念。(占5%)
  8、同步原理:载波同步、位同步、帧同步及网同步的基本原理和实现方法。(占10%)
  9、信道编码:有扰离散信道的编码定理,最小码距与检错、纠错的关系,差错控制技术,几种常用的检错码,掌握线性分组码、循环码的编译码原理,了解卷积码的基本概念。(占
  15%)
  10、了解移动通信、光通信的基本知识及通信领域前沿技术发展动态。(占5%)
  三、试卷类型及比例
  1、基本知识;填空、选择题(占40%);
  2、基本技能:计算、作图,设计和证明(占60%);
  3、课程内容大致比例:模拟通信占30%,数字通信占70%。四、考试形式及时间考试形式为笔试,考试时间为三小时(满分为150分)。五、参考书目
  《现代通信原理》第二版,沈保锁、侯春萍主编,国防工业出版社,北京,2006。

  815信号与系统
  一、考试的总体要求
  信号与系统是通信、电子信息、电子科学与技术等专业的一门专业基础课程,是国内外高校相应专业的主干课程之一。要求考生熟练地掌握本课程所讲述的基本概念、基本理论和基本分析方法,并利用这些经典理论分析、解释和计算信号、系统及其相互之间约束关系的问题。二、考试的内容及比例
  (一)信号与系统的基本知识(10~20%)
  1、基本信号及其两种(函数表达式和波形图)表示方法;
  2、信号的基本运算;
  3、系统的描述及系统的基本性质;
  (二)连续系统的时域分析(10~20%)
  1、零输入响应和零状态响应的概念、性质及其求法;
  2、冲激响应和阶跃响应;
  3、卷积、卷积的性质及卷积的计算方法;
  4、系统响应的时域求法;
  (三)连续信号与系统的变换域分析(30~40%)
  1、周期信号的傅里叶级数;
  2、周期信号的频谱及周期信号的傅立叶变换;
  3、非周期信号的傅里叶变换及其性质;
  4、取样信号、取样信号的频谱、取样定理及其应用;
  5、周期和非周期信号通过线性系统的频域分析;
  6、拉普拉斯变换及其性质;
  7、信号通过线性系统的S域分析;
  8、拉普拉斯变换与傅里叶变换之间的映射关系;
  (四)离散信号与系统分析(10~20%)
  1、离散时间信号(序列)的描述及其运算;
  2、离散卷积及其性质;
  3、线性离散系统的特性及其描述方法;
  4、差分方程的建立及其解法;
  5、Z变换及其性质;
  6、离散系统的Z域分析法;
  (五)系统函数(10~20%)
  1、系统函数的零极点与系统响应之间的关系;
  2、系统稳定性及其判断方法;
  3、系统的方框图、信号流图表示法与系统模拟;
  (六)连续与离散系统的状态变量分析(10~20%)
  1、状态、状态变量与状态方程的基本概念;
  2、连续与离散状态方程的建立方法;
  3、连续系统状态方程的求解;
  4、离散系统状态方程的求解;
  5、描述系统的状态方程与输入-输出方程之间的关系;
  6、系统的稳定性、可控性和可观测性的概念。
  三、试卷题型及比例试卷题型分为简答题(包括选择题和填空题等)、一般计算题和综合计算题三种类型,
  其中简答题和一般计算题约占80~90%,综合计算题约占10~20%。四、考试形式及时间
  考试形式为笔试,考试时间3小时,满分为150分。五、参考书目
  《信号与线性系统分析(第四版)》,吴大正主编,高等教育出版社。

  点击【2014年天津大学研究生自命题科目考试大纲】查看更多考研大纲。
【相关阅读】
研究生招生专业索引
2014年研究生考试大纲汇总

  友情提示:
  考研信息数量巨大,整理过程中难免出错,欢迎广大研友指正。此外很多历史数据已无处查找,所以为保证考研信息的完整性,考研网真诚欢迎广大研友帮忙补充信息,可回复评论或发送内容至http://bbs.kaoyan.com/f3p1
  本文系考研网精心整理,转载请注明出处。

※ 相关文章